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EXTENSION OF RELATIONAL EVENT ALGEBRA TO A GENERAL 
DECISION MAKING SETTING 

I.R. Goodman and G.F. Kramer   * 

NCCOSC RDTE DIV (NRAD) 4221, 
SEASIDE, BLDG 600, RM 341A, 

53118 GATCHELL RD, 
SAN DIEGO, CA 923152-7446 

Abstract 

Relational Event Algebra (REA) is a 
new mathematical tool which provides an 
explicit algebraic reconstruction of events 
(appropriately designated as relational events) 
when initially only the formal probability 
values of such events are given as functions of 
known contributing event probabilities. In turn, 
once such relational events are obtained, one 
can then determine the probability of any finite 
logical combination, and in particular, various 
probabilistic distance measures among the 
events. A basic application of REA is to test 
hypotheses for the similarity of distinct models 
attempting to describe the same events such as 
in data fusion and combination of evidence. 

This paper considers new motivation for 
the use of REA, as well as a more general 
decision-making framework where system 
performance and redundancy / consistency 
tradeoffs are considered. 

1 INTRODUCTION: BASIC ISSUES 

Two  fundamental quests in intelligence gathering 
are: 
(i)  The determination whether a pair of information / data 
models are consistent with respect to each other or are 
significantly different 
(ii) If the models relative to (i) are considered similar, how 
to combine them. 

This paper will be concerned with issue (i). Future 
work will deal with the equally important item (ii). The 
purpose of this paper is to motivate more interest in this 
interesting and fundamental area, rather than to present 
detailed results. (Space limitations here preclude this 
anyway.) 

At the outset, let us agree that the naive measure 
of distance between any two given events a,b, in some 

appropriately chosen boolean or sigma algebra B relative to 
a probability space (£2^S,P), is 

nP(a,b) = IP(a)-P(b)l . (0) 

This is a legitimate distance function between a and b, but 
it is not satisfactory: One can find in general events a and b 
quite distinct --even disjoint - for which their probabilities 
are similar. However, if the conjunction ab is also known 
or P(ab) is otherwise obtainable, then one natural measure 
of association is given by the standard probabilistic distance 
dp, where 

dP(a,b)=P(a+b) = P(a'b) + P(ab') = P(a) + P(b) - 2P(ab), (1) 

where the + inside the P( ) operator is the usual boolean 
symmetric difference operator. It is well known [I] that 
this function supplies a pseudometric — and indeed, a 
metric, modulo zero probability measure events. In fact it 
can also be shown (via use of the relative atom probabilities 
to verify the triangle inequality) that the relative 
probabilistic distance 

rP(a,b) = P(a+b)/P(avb) (2) 

- a possibly more satisfactory measure of association - is 
also a pseudometric. Still another natural candidate for 
measuring probabilistic closeness is provided by a 
symmetrization of conditional probabilities 

P(a,b) = -(l/2)log(P(alb)P(bla)). 
= (l/2)logP(a) + (l/2)logP(b) - logP(ab). (3) 

One can inquire as to what are the basic desirable 
properties that probabilistic measures of similarity should 
possess. Table 1 illustrates this for the four measures of 
similarity discussed above. It should be pointed out that the 
only proposed similarity measure of the four discussed here 
that satisfies the desirable properties 2-4 and does not satisfy 
the undesirable ones 5-9 is rP. 

* This work supported by NRaD FY 97 Independent Research 
Program, Codes 014 and 0141. 
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Similarity Measure mP 
Property 

nP dp rP     eP 

1 mp(a,b) function only of P(a),P(b) Y N N       N 

2 nv(a,b) function only of P(a),P(b), 
P(ab) N Y Y      Y 

3 mP(a,b)isa(pseudo)metric Y Y Y      N 

4 mp(a,b) monotone decreasing in 
P(ab) for fixed P(a),P(b) N Y Y       Y 

5 There exists a,b such that m^a.b) 
small, P(a) large, P(b) small N N N      Y 

6 There exists a,b such that mp(a,b) 
small, P( ab) small Y Y N     N 

7 There exists a,b such that mp(a,b) 
small, P(a) J\b) large, P(ab) small N N N      N 

8 There exists a,b such that mr(a,b) 
small, P(a),P(b) medium, P(ab) 
very small Y N N      N 

9 If P(a)JXb) small, then mp(a,b) small Y Y N      N 

alternative a = b (equivalently, up to zero probability 
measure, P(a'b)=P(ab')=0), under the above joint uniformity 
assumption we can show that the cdf (cumulative 
distribution function) F, of statistic dP(a,b) is 

F,(t) = t2-^), all 0 < t < 1 

while the cdf F2 for statistic rp(a,b) is 

F2(t) = t2,all0:£t<l. 

(4) 

(5) 

Thus, e.g., when s = rP(a,b) is computed numerically, the 
significance level 

Y = P(reject HQ I H„ true) 
= P(accept H, I HQ true) 
= F,(s) (6) 

means as usual that for all tests of hypotheses HQ vs. H, 
using the given s with any chosen significance level a 
(other than y) one should: 

Table 1. Comparison of Properties of Some 
Measures of Event Similarity 

Basic research issues   connected  with   Table   1 
include: 
1. Characterize the class of similarity measures satisfying a 
particular property or properties, such as 1 or 2. 

2. What properties, in addition to 2, guarantee uniqueness ? 

3. What other properties distinguish between nP and dP,rP,eP? 

4. What are the connections between similarity measures 
proposed here and pattern recognition techniques ? 

2. SIMILARITY OF MODELS VIA 
FORMAL TESTS OF HYPOTHESES 

USING PROBABILISTIC DISTANCES 

By making a natural second order probability 
assumption concerning the uniformity of distribution of the 
atomic probabilities P(ab), P(ab'), P(a'b), for formally 
varying P, one can test hypotheses concerning significance 
of association for each of the similarity measures discussed 
in Section 1.1 and others as well [2], More specifically, 
letting null hypothesis H„ correspond to a * b and H, to the 

accept H0 ( and reject H,), if a < y, 

reject Ho (and accept H,),   if oc> y. 

Equivalently, for any pre-chosen significance level a, 

accept HQ , if s > Ca , 

reject Ho , if s < Ca , 

where threshold constant Ca is determined from 

F2(CJ = a , 

i.e., 
Ca = a"2 . 

(Again, see [2] for more details.) 

(7) 

(8) 

(9) 

(10) 

3.   THE SITUATION WHEN 
PROBABILISTIC CONJUNCTIONS ARE 

NOT AVAILABLE 

When events a,b above are such that the actual 
conjunction ab -- or at least the evaluation P(ab) -- is not 
known, none of the above natural procedures can be carried 
out since both types of probabilistic distance functions 
depend explicitly on P(ab) (as well as the known marginal 
probabilities P(a), P(b)). Recall the usual tightest (Frechet- 
Hailperin) bounds to P(ab) and 
P(avb) [3]: 

max(P(a) + P(b) -1, 0) < P(ab) < min(P(a),P(b)) 
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<,  wP(a) + (l-w)P(b) 

<  max(P(a),P(b)) <, P(a v b) < min (P(a) + P(b), 1) (11) 

for any constant w, 0 < w < 1. Applications of eq.(l 1) to 
dp(a,b) and/or rP(a,b), in terms of knowing only the marginal 
probabilities P(a),P(b), show in general a wide leeway for 
error relative to the actual computations [2]: 

IP(a)-P(b)l <: dP(a,b) < min(P(a)+P(b), 2-P(a)-P(b)), 
(12) 

l-min(P(a)/P(b), P(b)/P(a)) <, rP(a,b) < min(l, 2-P(a)-P(b)). 

4.   SOME EXAMPLES LEADING TO 
MODEL COMPARISONS FOR 

SIMILARITY 

Consider the estimation of the probability of 
enemy attack tomorrow at the shore from two different 
experts who take into account the contributing probabilities 
of good weather holding, a calm sea state, and the enemy 
having an adequate supply of type I weapons. In the 
simplest type of modeling the experts may provide their 
respective probabilities as weighted sums of the 
contributing probabilities: 

Example   1. 

Modell: P(a) = w„P(c) + w12P(d) + w13P(e) 
(13) 

Model 2: P(b) = w2lP(c) +   wMP(d) + WyP(e), 

where 
0 < wtt < 1 , wu + wi2 + wu = 1, i=1.2, 

a = enemy attacks tomorrow, according to expert 1, 
b = enemy attacks tomorrow, according to expert 2, 
c = good weather will hold, 
d = calm sea state will hold, 
e = enemy has adequate supply of type 1 weapons. 

(14) 

Note that the simple-appearing linear forms in eq.(l) may 
well belie a more complex situation. Unless the events c.d.e 
are disjoint and exhaustive with respect to a and b, the two 
models in eq.(13) do not correspond to the usual total 
probability expansion forms where, e.g. w,, = P(alc), w12 = 
P(ald), etc. Furthermore, each expert may weight quite 
differently the contributions of c,d, or e to enemy attack. 
Thus, the fundamental issue here is: Are both experts' 
models similar enough to be combined into a single model 
or are they significantly distinct as to be either held separate 
until further information arrives or one or both are to be 
discarded? 

Relational event algebra (REA) has been developed 
to address the above and related issues.   (See, e.g., [2] for 

background.) By appropriately imbedding the events c,d,e 
in a higher order boolean algebra and utilizing a 
corresponding higher order probability space a reasonable 
solution to the problem can be obtained. Thus, letting 
(£2,2?,P) be the given probability space associated with 
c,d,e (in boolean or sigma algebra B ), the higher order 
probability space (Q0,B0,P0) is essentially the product 
probability space formed out of a countable infinity of 
factor spaces, each identical to (ß,ß,P). Then, it can be 
shown that one can obtain ([2], Theorem 3 for n=3 in 
conjunction with eqs.(92),(93)) the relational event 

= (cde x £2„) v (cde' x 8(w„ + w12)) 
v (cd'e x 9(wu+w13)) v (c'de x 8(w12 +wl3)) 
v (cd'e' x e(w„)) v (c'de' x 8(w12)) 
v (c'd'e x 0(w13)), 

where 
Q„=ßxüxQx... 

(15) 

(16) 

and the B() are certain (constant) conditional events in B0 

(see Example 4, Section 5 for explanation) such that for; 
essentially all choices of probability measure P, the 
compatibility condition with eq.(13) holds, formally 
replacing P by P0 on the left-hand side: 

P„(a) = w„P(c) + w12 P(d) + w13P(e).       (17) 

A similar result holds for b. Then, it can be shown that the 
conjunction probability here is 

P0(ab) = P(cde) + P(cde')min(w„ +wl2,w21+w22) 
+ P(cd'e)miD(W||+W|j,w2i+w23) 
+ P(c'de)min(w12+Wi3,w22+w23) 
+ P^d'e^mi^Wn.Wj,) 
+ P(c'de')min(w12,w22) 
+ P(c'd'e)min(w13,w23), 

and 
P0(a v b) = P(a) + P(b) - P0(ab); 

(18) 

(19) 

or equivalently, replacing min by max throughout eq.(18). 
Next, eqs.(18), (19) in conjunction with eqs.(l),(2) can be 
used to compute the similarity measures dP(a,b) or rp(a,b) 
here. In turn, these computations can be applied as outlined 
in Section 2 to test hypotheses about the distinctness or 
redundancy of the two models in eq.(13). 

An even more complicated problem arises when 
one or both experts produce nonlinear models for their 
respective opinion probabilities such as the exponential 
forms: 

Example  2. 
Model 1:    P(a) = wn(P(c))" + w12(P(d))r2 + w13 (P(e))'3 

(20) 
Model 2:   P(b) = w21(P(c))sl + w22(P(d))s2 + w23(P(e))s3, 
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where a,b,c,d,e and the w^ are as in eq.(14) and the Sy are 
any fixed positive real numbers. Still another example can 
arise from natural language and fuzzy logic considerations. 
In this case, two experts may be responding initially via 
linguistic narratives describing independently the same 
target from different perspectives or using different sensor 
systems: 

Example  3. 

Model 1: Ship A is very long and has a large number of 
Q-type weapons on deck 

(21) 
Model 2: Ship A is fairly long or it is actually two or 

more different ships 

Translating the models in eq.(21) to fuzzy logic 
terminology (see, e.g. [2] for background) yields 

fB(x) = P(x in S(fB)), all x in D , (26) 

(22) 
Model 1: t(a) = min( (f1<Mf(lngth(A)))J, ^(#(0))) 

Model 2: t(b) = max( (f^GnguXA)))1-5, f2+(#(R))), 

where 

t(a) = truth or possibility of the description of 
ship A using Model 1, 

t(b) = truth or possibility of the description of 
ship A using Model 2; 

f100|!:Pos.ReaIs -> [0,1], 

fu^rPos.Reals -» [0,1] , 

f2+ : (0,1,2,3,...) -> [0,1] 
(23) 

are appropriately determined fuzzy set membership functions 
representing "long", "large", "2 or more", respectively; 

A = Ship A, 
Q = Q-type weapons on A 
R = Ship A actually consists of set R of 

different ships; 
(24) 

and measurement functions 

lngth() = length of () in feet, 
#() =no. of(). 

(25) 

The one-point coverage relation between  fuzzy 
logic and random sets (see, e.g. Goodman [4]) is 

where fB:D -» [0,1] is a fuzzy set membership function 
corresponding to attribute B and random set S(fB) c D need 
not be unique in general. This produces the following 
corresponding probability evaluations in eq.(22): 

Model 1: P(a) = min((P(c))\ P(d)), 

Model 2: P(b) = max((P(c))'-5, P(e)), 

where now 

a = description of ship A via Model 1 is valid, 
b = description of ship A via Model 2 is valid, 
c = lngth(A)inS(flong), 
d = #(Q)inS(fUrge), 
e = #(R)inS(f2+). 

(27) 

(28) 

As in Example 1, REA can be used to address 
Examples 2 and 3, but again, lack of space here precludes 
any details. (See [2] for related results.) 

5. THE CONDITIONAL EVENT 
ALGEBRA PROBLEM. 

Consider yet another example which also 
illustrates a special important case of the REA problem. 
Here, the functions of the contributing probabilities are all 
simple divisions yielding conditional probabilities: 
Determine the consistency of conditional probabilities in 
eq.(29), utilizing, if possible, the distance metrics discussed 
in the Introduction: 

Example  4. 

Modell: P(cid) = P(cd)/P(d), 

Model 2: P(cle) = P(ce)/P(e). 
(29) 

These values could represent, e.g., two posterior 
descriptions of parameter c via different data sources 
corresponding to events d,e. 

Until recently there was no standard way to deal 
with the natural similarity issues connected with eq.(29). 
Again, this is because until only the last few years, there 
was no sound approach to determining just what the 
conjunction of the relational events (cld)&(cle) means - 
using obvious notation here to denote the relational 
(actually, conditional) events a = (eld), b = (cle), 
corresponding to given conditional probabilities P(cld), 
P(cle), respectively. This also applies to determining 
dp((cld),(ce)) and rp((cld),(cle)). Commencing with the work 
of Calabrese in 1987 [5] based upon his earlier ideas and 
that of Adams [6], interest in the conditional event problem 
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was significantly revived. (Actually, the problem had been 
considered previously from time to time by various 
individuals beginning with Boole [7], made more rigorous 
by Hailperin [8] over a hundred years later. In addition there 
was the independent work of DeFinetti [9] and Schay [10], 
among others. But, little follow-up work and cohesion of 
effort was accomplished. See Goodman [11] for a more 
thorough early history of the problem.) 

Following Calabrese' contributions (see also the 
more recent work in [12]), Goodman and Nguyen addressed 
the conditional event algebra problem, taking a different 
approach from Calabrese - Adams [13,14]. However, all of 
these proposed CEA's had drawbacks, the paramount one 
being that none of the proposals yielded algebraic / logical 
structures which take a boolean or sigma algebra form, 
necessary in order to be able to apply the already richly 
developed body of standard probability results, including 
expansion forms, limit theorems, inequalities, and natural 
sample space and frequency interpretations. But, still more 
recently, a number of these difficulties — including the 
boolean algebraic structure deficiency - have been overcome 
with the introduction and extension of a CEA by Goodman 
and Nguyen [15,16] which was earlier independently 
proposed by Van Fraasen [17] and by McGee [18], but 
neglected. This CEA is based essentially on the algebraic 
analogue of the standard expansion of arithmetic division in 
terms of an infinite series (of sums of power terms) and has 
a number of appealing natural properties, including a full 
independence-based characterization [15]. For purpose of 
reference, we denote it as the product space CEA. 

It is interesting to note that despite the recent 
progress made in developing CEA's, including the 
publication of an entire issue of the IEEE Transactions on 
Systems, Man & Cybernetics [19], two monographs 
devoted to the subject [20,21], as well as a host of 
workshops and papers, a goodly number of researchers in 
rule-based systems are still unaware of the potential use of 
CEA in determining the similarity of rules. This also holds 
for the related problem of deletion or addition of rules to a 
given rule-based system based on the degree of mutual 
distinctness. For example, Rowe ([22], especially Chapter 
8) explicitly recognizes the importance of both assigning 
conditional probabilities to inference rules as natural 
measures of their overall uncertainty and determining 
exactly - or at least via bounds - probabilities of the basic 
logical (&,v) combinations of such rules. However, Rowe 
concludes: 
"The last section shows that combining probabilities in rule- 
based systems is very important. Surprisingly, there is no 
fully general mathematical approach to combining: the 
problem can be proved mathematically intractable. But, we can 
give some formulas that hold under particular assumptions.." 

Needless to say, the mathematical development of 
the product space CEA contradicts Rowe's claim of 
intractability. Furthermore, his "conservative" and "liberal" 

bounds on the probability evaluation of logical 
combinations of rules (which he tacitly assume are 
conditional events in a boolean algebra to be able to obtain 
bounds — though he does not display the conditional events 
explicitly), as well as his independence assumptions where 
invoked, correspond completely to our previously derived 
results as displayed, e.g., in [15]. In particular, see the 
Frechet-Hailperin bounds in eq.(l 1) where events a and b 
represent conditional events such as (eld) and (cle) in eq.(24). 
Because of space limitations, we can only present a few 
basic results for the product space CEA as applicable to 
eq.(29): 

Again, denote the given probability space for 
events c.d.e... as (Q.fl.P) (with c,d,e,.. in boolean or sigma 
algebra B , etc.). Then, 

(eld) = (cd x n0) v (d'x cd x Q„) v (d' x d' x cd x Q0) v..., 
(30) 

where 
ß, = flxQxflx  (31) 

(eld) satisfies the basic compatibility relation for eq.(29), 
again formally replacing P by P0 in the left-hand side,  '■ 

P0((cld)) = P(cld) (32) 

for essentially all choices of P. 
(cle) has a similar expansion with d replaced by e, 

and noting that all of these conditional events lie in the 
boolean algebra B0 generated by B x B x B x..., 
corresponding to product probability space (£i0,50,P0). 
Despite the countable infinite number of factors in the 
above structures, the basic logic of boolean operations 
among these conditional events yields finite computational 
results such as 

P0((cld)&(cle)) 
= (P(cde) + (P(cde')P(cle)) + (P(cd'e)P(cld))) / P(d v e) (33) 
and 

P0((cld) v (cle)) = P(cld) + P(cle) - P0((cld)&(cle))      (34) 

because, again, all of the usual laws of probability apply to 
this space as well. Then, eqs.(33) or (34) can be used in 
conjunction with eqs.(l) or (2) (where again, a=(cld) , b 
=(cle)) to obtain the measures of similarity, dp((cld),(cle)) or 
rP((cld),(cle)), between the conditional expressions in eq.(29), 
which, in turn, can be used to test hypotheses as outlined in 
Section 2. 

Extensive numerical experiments are being 
conducted for examples similar to the four given above; 
preliminary results show reasonable results and significant 
improvement compared to the situation where the 
conjunction or disjunction probabilities are not known and 
only the Frechet-Hailperin bounds can be utilized (in effect 
similar to Rowe's suggestions) [23]. 
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6. THE GENERAL RELATIONAL 
EVENT PROBLEM 

Examples 1-4 above give rise to the following 
problem, stated for two models, but readily generated to any 
number of ones: Given probability space (£2,ß,P) with 
c,d,e,.. in B, and given the models 

Model 1: P(a) = f(P(c),P(d),..,P(e)), 

Model 2: P(b) = g(P(c),P(d),...,P(e)), 
(35) 

find a larger probability space (ß^ßj.P,) and an event- 
valued function h such that events a = h(c,d,..,e,...;f) and b 
= h(c,d,..,e,...;g) are in ß, , compatible with eq.(35) in the 
sense that for essentially all choices of P, the equation holds 
where P in the left-hand side is replaced by P,. Once such 
relational events are constructed, then as shown for 
Examples 1 and 4, measures of association between the 
models and corresponding tests of similarity / redundancy 
can be established. 

A natural extension of this is to consider a general 
decision theory setting where T is a given collection of 
models or even inference rules and q is a new model or 
inference rule to be considered for addition to T. Let J(T) be 
a performance or cost measure associated with T; similarly 
for J(Tuq). J(T) could represent the cost in dollars of 
operating system T or the efficiency of T (such as in kill- 
probabilities or timeliness of execution of decisions, etc.). 
Also, determine K(T), K(T,q), where K(T) is the overall 
measure of similarity within T — choosing either dp or rp, 
etc. — averaged over all pairs of elements (i.e., models or 
inference rules) in T and where K(T,q) is a similarly 
averaged measure of similarity between K and q. We then 
seek tradeoffs between J(T) and K(T) and between J(TUq), 
and K(T,q), etc. The idea here is to introduce distances 
between events in S that in the past were not considered as 
bona fide, compatible with natural probability evaluations, 
and therefore did not permit distances or measure of 
redundancy to be obtained - such as the special case of S 
being a set of inference rules. One can then also seek the 
usual decision-theoretic properties, including game values, 
minimax and bayes decision functions, and least favorable 
priors, among others. A basic start toward this goal is 
presented in [16]. 
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